## **Short Communication**

## The Ramansolution spectrum of tetraoxygen difluoride $(O_4F_2)$

D. J. GARDINER\* AND J. J. TURNER

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received October 29th, 1971)

Tetraoxygen difluoride  $(O_4F_2)$ , a red unstable solid m.p. 82 K, can be prepared by electrical discharge in an oxygen/fluorine gas mixture  $(O_2:F_2, 2:1)$  in a Pyrex vessel cooled to 77 K<sup>1</sup>. Because of its instability, information about its structure is limited. It is clear from ESR<sup>2,3</sup> and NMR<sup>4</sup> data in solution that  $O_4F_2$  is in equilibrium with the radical  $O_2F$ . Infrared spectra <sup>5, 6</sup> produced on allowing a low-temperature matrix (*e.g.* argon at 20 K) containing  $O_2F$  to warm slightly are consistent with  $2O_2F \rightarrow O_4F_2$ , the spectrum of  $O_4F_2$  being very little different from  $O_2F$ .

We have now obtained solution Raman data for  $O_4F_2$  by photolysing a lowtemperature solution of oxygen difluoride ( $OF_2$ ) in liquid oxygen at about 90 K.

The solution of  $OF_2$  in  $O_2$  (approx. 3:1 by volume) was prepared in a simple quartz still by methods previously described <sup>3, 7</sup>; the Raman spectrum was obtained using a Coderg PH 1 laser instrument and showed clearly bands due to  $OF_2$  and  $O_2$ . After photolysis with a Pyrex-filtered mercury arc ( $\lambda > 320$  mm) for some 15 min the solution was deep orange in colour <sup>3</sup> and the Raman spectrum obtained as shown in Figure 1. Compared with  $OF_2$  the concentration of product was low. The vibrational data obtained in this and other relevant experiments are given in Table 1.

The closeness of the frequencies for v(O-O-F) and v(O-F) in matrix and solution suggests that the perturbing influence of the matrix or solution on the vibrational potential function is very small. Hence the position of the O-O stretching frequencies suggests that the species produced in solution is  $O_4F_2$ , not  $O_2F$ . It is striking, as has been noted before <sup>5, 6</sup>, that the degree of interaction between two  $O_2F$  radicals should only be sufficient to shift the O-O stretch by some 25 cm<sup>-1</sup> and the other vibrations not at all. This is strong evidence that the  $O_4F_2$  molecule is bonded through the oxygens in some manner:



<sup>\*</sup> Present address: Dept. of Chemistry, University of York, Heslington, York YO1 5DD (Great Britain).

J. Fluorine Chem., 1 (1971/72) 373-375



Fig. 1. Raman spectrum of photolysed OF<sub>2</sub>/O<sub>2</sub> solution at approximately 90 K.

## TABLE 1

VIBRATIONAL DATA FOR  $O_4 F_2$ 

| Raman solut<br>(cm <sup>-1</sup> ) | tionª<br>ρι <sup>b</sup> | IR O <sub>4</sub> F <sub>2</sub><br>in argon 20 K <sup>5,6</sup><br>(cm <sup>-1</sup> ) | IR O <sub>2</sub> F<br>in argon 20 K <sup>5,6</sup><br>(cm <sup><math>-1</math></sup> ) | Assignment |  |
|------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|--|
| 376.8±1                            | 0.6                      | 376                                                                                     | 376                                                                                     | δ(O–O–F)   |  |
| $584.6 \pm 1$                      | 0.5                      | 586                                                                                     | 586                                                                                     | v(O-F)     |  |
| 1516.2+1                           | ~0.7                     | 1515                                                                                    | 1590                                                                                    | v(O-O)     |  |

\* This work.

<sup>b</sup>  $0 < \rho_1 < 0.75$  for polarized (symmetric) and  $\rho_1 = 0.75$  for depolarized (asymmetric) bands.

It is interesting that there was no Raman evidence for  $O_2F$  in  $O_2$  solution in spite of the fact that photolysed low-temperature solutions show very strong ESR signals due to the radical<sup>3</sup>.

$$F_{2} \rightarrow 2F$$

$$2O_{2}+2F \rightarrow 2O_{2}F$$

$$2O_{2}F \rightleftharpoons O_{4}F_{2}$$
(1)

Presumably under the conditions of the present experiment the equilibrium (1) lies over to the right.

J. Fluorine Chem., 1 (1971/72) 373-375

## REFERENCES

- 1 A. G. STRENG, Chem. Rev., 63 (1963) 607.
- 2 C. T. GOETSCHEL, V. A. CAMPANILE, C. D. WAGNER AND J. N. WILSON, J. Amer. Chem. Soc., 91 (1969) 4702; R. W. FESSENDEN AND R. H. SCHULER, J. Chem. Phys., 44 (1966) 434.
- 3 N. J. LAWRENCE, J. S. OGDEN AND J. J. TURNER, J. Chem. Soc. (A), (1968) 3100.
- 4 I. J. SOLOMON, J. K. RANEY, A. J. KACMAREK, R. G. MAGUIRE AND G. A. NOBLE, J. Amer. Chem. Soc., 89 (1967) 2015; I. J. SOLOMON, J. N. KEITH, A. J. KACMAREK AND J. K. RANEY, J. Amer. Chem. Soc., 90 (1968) 5408.
- 5 R. D. SPRATLEY, J. J. TURNER AND G. C. PIMENTEL, J. Chem. Phys., 44 (1966) 2063; A. ARKELL, J. Amer. Chem. Soc., 87 (1965) 4057.
- 6 D. J. GARDINER, N. J. LAWRENCE AND J. J. TURNER, J. Chem. Soc. (A), (1971) 400.
- 7 D. J. GARDINER AND J. J. TURNER, J. Mol. Spectroscopy, 38 (1971) 428.